Single Line Edits (SLEs) to the Max

William C. Moore Jr. (Willie)

CA-World 2002
Data Management and Application Development
DAV12SN
Introduction

The Single Line Edit (SLE) is one of the most basic controls at a programmer’s disposal. The purpose of this paper is to show how the basic SLE can be expanded. The following topics will be covered:

· Subclassing

· Basic Dispatching

· Effectively Using Buttons with SLEs

· Optimizing

· Specialized Subclasses

The source code to this session will be available on the CA web site, as well as my web site (http://www.wmconsulting.com).

Subclassing

Why Subclass?

Subclassing performs a couple of functions. First, it protects your code. The next version of CA-Visual Objects may change some functionality of the SLE. By subclassing, I can ensure that my default behavior will always happen. Secondly, subclassing allows you to expand a class without changing the base class.

Creating

The first step in extending the SingleLineEdit class functionality is to create a subclass. To create the subclass, add this line of code to a module in your project:

CLASS mySLE INHERIT SingleLineEdit

Abstract Class

Once you have created your subclass, the base class should be considered an abstract class, that is to say, a class that is not designed to be called directly. Always use your subclass so keystrokes, accesses, etc. can be handled uniformly across your application. The following is an example of how the SingleLineEdit class can be broken down.

SingleLineEdit

>>>>>>Abstract Class (do not call directly)

 RightSLE

>>>>>>Container class (major keyhandling goes here)

 FileSLE

|

 pbFileSLE
|

 DateSLE

|
>>>>>>Subclasses that are specialized

 SearchSLE
|

CalcSLE
|

 pbCalcSLE
|

By having a single subclass of SingleLineEdit that acts as a base class for specialized subclasses like searchSLE and calcSLE, Keys like the Esc key and Enter key will act the same way across the subclasses.

FieldSpecs

Fieldspecs are very useful, as you can define a few that will handle most of your data types. The biggest benefit of using fieldspecs is that you can change your database design with minimal code changes. For example, if your application uses a lot of numeric 10.2 fields and you get a customer request to increase the size from 10.2 to 12.2, this becomes a simple change. By changing your numeric fieldspec to 12.2, all of your datawindows will be changed without recoding.

You can subclass the SingleLineEdit control without using fieldspecs. But the fieldspec makes it easier to code, as there are properties that you can test for and against.

Using

To use your subclass, or any of its specialized subclasses, simply use the "inherit from" property and select the subclass that you want to place (i.e., rightSLE, searchSLE, etc). Please note that you have to compile your subclass BEFORE it will appear in the drop down list for the “inherit from” property box.

Basic Dispatching

You can attach a dispatcher to any control. This gives the programmer incredible control through the ability to catch and handle events before normal processing occurs. The following is a dispatcher at its most basic level:

Class mySLE inherit SingleLineEdit

Method dispatch() class mySLE

Infoxbox{self,”Single Line Edit”,”I’m in the dispatcher”}:show()

Return super:dispatch()

In this sample, a message is displayed, and then normal processing occurs (return super:dispatch() takes care of this). However, there are times where you do not want normal processing to occur.

Stopping Further Processing

The way to stop further processing from inside a dispatcher is to return 1L. This tells Windows that the event has been taken care of and no further action is required.

When Is Enough Enough?

Computer Associates sells a companion product to CA-Visual Objects called the CA-Visual Objects SDK (Software Developers Kit). This is an invaluable tool. It contains the source to the GUI classes. I recommend that you use the SDK to see what the developers’ intentions were with a given class. That way you can make intelligent choices on when it is appropriate to leave a dispatcher without calling the super.

Responding to the Enter Key

One of the first things I wanted to do when I started programming in Windows was to make the keyboard consistent with CA-Clipper’s. This meant that I had to have the Enter key take me between controls. CA-Visual Objects does provide this functionality via the CLIPPERKEYS property of the Window Editor. However, using CLIPPERKEYS does have some unwanted side effects, the biggest being that pressing Enter over a push button takes you to the next field. But, by using inheritance, we can subclass the Single Line Edit and overcome that limitation. The key to example 2 is the KEYUP method. That is where you trap the Enter key.

CLASS mySLE INHERIT SingleLineEdit

PROTECT INSTANCE hOwner
AS WORD

Protect nDirection

AS INT

Protect lEnterKeyMoves
AS LOGIC
// gets assigned from

// CAVOWED.INF

METHOD Init(oOwner, nId) CLASS mySLE

Super:Init(oOwner, nID)

// Get Windows handle of owner window

IF IsInstanceOf(SELF:Owner, #DataWindow)

SELF:hOwner := SELF:Surface:Handle()

ELSE

SELF:hOwner := SELF:Handle()

ENDIF

SELF:nDirection := 1

// go forward

METHOD KeyUp(oE) CLASS mySLE

// Process keys as required

DO CASE

CASE oE:KeyCode == KEYENTER

 If SELF:lEnterKeyMoves

If nDirection

Do case

 CASE nDirection = 1

// Set focus to next control on window

PostMessage(SELF:hOwner, WM_NEXTDLGCTL, 0, 0L)

 CASE nDirection = 2

// move to previous control on window

postMessage(SELF:hOwner, WM_NEXTDLGCTL, 1, 0L)

END CASE

ENDIF

 ENDIF

ENDCASE

RETURN SUPER:KeyUp(oE)

Assign EnterKeyMoves(uNew) class mySLE

Self:lEnterKeyMoves := uNew

Return self:lEnterKeyMoves

Window Editor Modifications

With the Enter key taken care of, it would be nice to have a property on the Window Editor designer so you can turn the Enter key on and off. Fortunately, that is an easy fix. The file CAVOWED.INF has to have a couple of lines added to it and bingo, new property.

[CONTROL:TEXTCONTROL:EDIT:SINGLELINEEDIT]

Assign01=Block,Block(string)

Assign02=Block Owner,BlockOwner(STRING)

Assign03=OverWrite,OverWrite(OVERWRITE)

Assign04=Picture,Picture(STRING)

Assign05=Scroll Mode,ScrollMode(SCRMODE)

Assign06=Focus Select,FocusSelect(FSELECT)

Assign07=Auto Focus Change,AutoFocusChange(BOOL)

Assign08=Move on EnterKey,EnterKeyMoves(BOOL)

ContTitle=Single-Line Edit

ClassName=edit

Name=SingleLineEdit

Size=80,20

Style=WS_CHILD|WS_TABSTOP|WS_BORDER|ES_AUTOHSCROLL

ExStyle=WS_EX_CLIENTEDGE

HelpID=2185

PropTabs=HyperLabel,rightSLE:General,SingleLineStyles:Styles,ExStyles

InitMethod=SingleLineEdit(PARENT,ID,POSITION,SIZE)

InheritClassName=Inherit from Class,InheritClassName(CLASS:SingleLineEdit)

In the Assignmap section, add the following to the end of the section:

EnterKeyMoves=

And finally, in the stdProperties section, add the following to the end of the section:

rightSLE=(General SinglelineEdit Properties)Move on EnterKey,Block,Block Owner,Field Spec,Text Limit,Text Color,Background Color,Inherit from Class,Context Menu,Tooltip,Font,Picture,Overwrite,Scroll Mode,Focus Select,Auto Focus Change,Input Method Editor,_Visible,_GenCode,Owner Alignment,_Width,_Height,_Left,_Top

NOTE: Always make changes to CAVOWED.INF with great caution. While the above sample will indeed let you add an additional property to the single Line Edit, it can cause unwanted side effects. For example, after making this modification, any Single Line Edit control that is added that does not inherit from your subclass will cause a runtime error, as it does not have the access/assign to handle the Enter key. But even this can be overcome. You can always add your own access/assign to the Single Line Edit class itself. Unfortunately, if you do this, you will still not have the code to handle the key, just to suppress the error message.

Effectively Using Buttons with SLEs

Buttons are a visual aid that many end-users “demand”. Unfortunately, CA-Visual Objects does not natively support a buttonSLE class. However, subclassing can again come to our aid. By starting off with a button abstract class, we can subclass to create buttons that respond to each of our SLEs. There are a couple of design considerations that must be addressed.

· Must be easy to implement

· Must respond to messages just as the SLE does

· Must integrate into the IDE

Easy to Implement

The button must be easy to implement. This is accomplished through the “inherit from” property of the IDE. Each specialized subclass should be named in a way that makes it easy to identify. For example, the fileSLE pops up a file open dialog box when double clicked. The pushbutton version is called pbfileSLE.

Must Respond to Messages

The pushbutton classes must respond to messages such as hide/show. They must also obey the readonly status.

Must Integrate into the IDE

A pushbutton subclass must integrate well into the IDE. In other words, the visual layout of the SLE should not change when we add the pushbutton. The code below demonstrates that principle. The size of the SLE is shrunk down to accommodate the pushbutton. In that way, the layout of surrounding controls is not affected.

METHOD Init(oForm,oResID,oPoint,oDim,kStyle,lDataAware) CLASS pbFileSLE

SUPER:init(oForm,oResID,oPoint,oDim,kStyle,lDataAware)

oPoint
:= SELF:origin

oDim
:= SELF:size

oPoint:y -= 1

oPoint:x := oPoint:x + oDim:width-28

oDim:width := 30

oDim:height += 1

SELF:oPB := SLEButton{oForm,-1,oPoint,oDim,SELF}

SELF:oPB:hBitmapUp := LoadBitmap(_GetInst(),String2Psz("IBM_FOLDUP"))

SELF:oPB:hBitmapDown := LoadBitmap(_GetInst(),String2Psz("IBM_FOLDDN"))

SetWindowPos(SELF:handle(),0L,0,0,SELF:size:width-30,SELF:size:height,SWP_NOMOVE+0x14)

// before we leave, show the push button we created

IF SELF:IsVisible()

SELF:oPB:show()

ENDIF

// if the SLe is disabled in the IDE, we want to disable the button as well

IF SELF:ReadOnly .or. !IsWindowEnabled(SELF:handle())

SELF:disable()

ENDIF

RETURN SELF

Optimizing Your SLE

There are many different ways in which you can optimize your SLE controls. This next section will take a look optimizations, how to implement a postinit, using focuschange, and the various specialized subclasses that comprise rightSLE and show how we can make the code a bit more maintainable.

Buttons

In the last section, we looked at buttons and how we could use them to make an SLE more intuitive. Unfortunately, the code that we end up with involved many cuts and pastes. While at first this appears to be the quickest way to get code up (it really is), it increases the backend cost of maintaining your code. With that in mind, let’s rethink the button class.

Rethinking

Each specialized button class involves four basic elements:

1. Button up

2. Button down

3. Message to send

4. SLE that it interfaces with

With this in mind, we can abstract back one layer and build this into an SLEButton class that handles the dirty work for us. The following code demonstrates this new button class.

CLASS SLEButton INHERIT wmBitmapButton

PROTECT oJoinedSLE AS OBJECT

PROTECT nMessage
AS DWORD

METHOD Init(oForm,oResID,oPoint,oDim,oSLE) CLASS SLEButton

SELF:oJoinedSLE := oSLE

SUPER:init(oForm,oResID,oPoint,oDim,,WS_TABSTOP)

nMessage := WM_LBUTTONDBLCLK
// default message to send

METHOD Dispatch(oE) CLASS SLEButton

DO CASE

CASE oE:Message == WM_LBUTTONUP

// I use postmessage here so I do not wait for

// the dialog to close before I finish handling

// this button press

PostMessage(SELF:oJoinedSLE:handle(),SELF:nMessage,0,0L)

RETURN 1L

ENDCASE

RETURN(SUPER:Dispatch(oE))

The Main Subclass

The next section to look at is the main subclass of Single Line Edit. This is really a container class. Its job is to protect the behavior that we implement. It processes all SLE keystrokes and passes off to the super anything that we do not explicitly handle. With that in mind, the first opportunity for optimization is the statement:

If !self:Readonly

// some code goes here

endif

By moving this to the front of the main case structure, we can improve performance and readability. By improved performance, I am not speaking of huge time savings. However, if you have clients on older machines (486/ Pentium 75,100,133,166), they will appreciate anything you can give them. Readability is improved by one less if/endif to look through when debugging or doing code reviews. Just remember that if you have a dispatch in any of your specialized classes, you should check for readonly at the beginning of its dispatch. Here is an example of the modified case:

METHOD Dispatch (oEvent) CLASS rightSle

LOCAL nRet

AS LONG

LOCAL lShiftOn

AS LOGIC

LOCAL lCtrlOn

AS LOGIC

LOCAL lExtSel

AS LOGIC

LOCAL cChar

AS STRING

LOCAL cText

AS STRING

LOCAL nStop

AS DWORD

LOCAL uMsg := oEvent:umsg AS DWORD

LOCAL wParam := oEvent:wParam AS DWORD

/*

 Only the messages, that rightSle wants to know about.

 All the rest go through to SingleLineEdit's dispatch and every other class's

 dispatch that is involved from there - There are lots of them!!!!

*/

IF (((uMsg == WM_KEYDOWN) .or. (uMsg == WM_KEYUP) .or. (uMsg == WM_CHAR)))

 lShiftOn := LOGIC(_CAST, _And(GetKeyState(VK_SHIFT), SHORT(_CAST, 0x8000)))

 lCtrlOn := LOGIC(_CAST, _And(GetKeyState(VK_CONTROL), SHORT(_CAST, 0x8000)))

 lExtSel := lShiftOn .and. ((uMsg == WM_KEYDOWN) .or. (uMsg == WM_KEYUP)) .and.;

((wParam == VK_LEFT) .or. (wParam == VK_RIGHT) .or. (wParam == VK_END)

.or. (wParam == VK_HOME))

ENDIF

cChar := Upper(CHR(oEvent:wParam))

// cut and paste stuff goes here

IF SELF:lAllowcutandPaste

 IF InList(cChar,"X","C","V","Z") .AND. ;

 lCtrlOn .and. !SELF:ReadOnly .and. ;

 uMsg == WM_KEYDOWN

 IF cChar = "X"

 IF SELF:FieldSpec <> NULL_OBJECT .and. SELF:FieldSpec:valtype == "N"

 SELF:oEditString:Cut()

 nStop

:= SELF:Selection:Finish

 cText

:= SELF:TextValue

 SELF:TextValue

:= SELF:SetField(cText,1)

 SELF:value

:= SELF:FieldSpec:Val(cText)

 SELF:ValueChanged
:= TRUE

 SELF:selection

:= selection{nStop,nStop}

 ELSE

 SELF:cut()

 ENDIF

ELSEIF cChar = "C"

 SELF:Copy()

ELSEIF cChar = "V"

 IF SELF:FieldSpec <> NULL_OBJECT .and. ;

(SELF:FieldSpec:Valtype == 'C' .or. ;

SELF:FieldSpec:Valtype == 'D')

 SELF:paste()

 ELSEIF (SELF:FieldSpec <> NULL_OBJECT .and. ;

SELF:FieldSpec:Valtype == 'N')

 SELF:rslePaste()

 ELSE

 SELF:paste()

 ENDIF

 ELSEIF cChar = "Z"

 SELF:Undo()

 ENDIF

 RETURN 1L

 ENDIF

 ENDIF

 DO CASE

CASE SELF:ReadOnly

// we do not want to do anything here

// Process keys as required

CASE oEvent:Message == WM_KEYUP //WM_GETDLGCODE

IF oEvent:wparam == VK_RETURN .and. !SELF:lTurnOffEnter

// give the people the chance to subclass

// rightSLe and change the behavior of the enter key

nRet := SELF:ProcessEnter()

RETURN nRet

ENDIF

CASE !(SELF:FieldSpec == NULL_OBJECT) .and. SELF:FieldSpec:Valtype == 'D'

DO CASE

CASE oEvent:Message == WM_LBUTTONDBLCLK

IF IsMethod(SELF,SELF:symMethod)

Send(SELF,SELF:symMethod)

RETURN 1L

ENDIF

// Support for VK_ADD and VK_SUBTRACT like in Quicken

CASE oEvent:Message == WM_KEYDOWN .And. (oEvent:wParam == VK_ADD .Or.

oEvent:wParam == VK_SUBTRACT)

// Grab the event, the KeyDown and send it over to PEDateSle's KeyDown

SELF:CalKeyDown(oEvent)

RETURN 1L

// Stop the SLE from beeping

CASE oEvent:Message == WM_CHAR .And. (CHR(oEvent:wParam) == "+" .Or.

CHR(oEvent:wParam) == "-")

// Beep if you have too, but don't process either of these keys

IF CToD(SELF:TextValue) == NULL_DATE

MessageBeep(0xFFFFFFFF)

ENDIF

/*

 By returning 1L we prevent oEditString:ProcessKeyEvent() being

 called in the dispatch of SingleLineEdit..

 ProcessKeyEvent() of __FormattedString calls

 ProcessChar() which in turn calls MatchesTemplChar() which will

 fail because of the + or - . When it fails it calls

 InvalidAction() of __FormattedString which is the MesssageBeep

 which was driving me up the wall.

 */

RETURN 1L

CASE oEvent:Message == WM_COMMAND

IF oEvent:wParam == IDM_PEDateSleContextMenu_File_Calendar_ID

// Pop up the calendar

IF IsMethod(SELF,SELF:symMethod)

Send(SELF,SELF:symMethod)

RETURN 1L

ENDIF

ELSEIF oEvent:wParam == IDM_PEDateSleContextMenu_File_Today_ID

// Just stuff today's date back into PEDateSle

SELF:Value := Today()

RETURN 1L

ENDIF

END CASE

CASE !(SELF:FieldSpec == NULL_OBJECT) .and. ;

 (SELF:FieldSpec:Valtype == 'N' .or. ;

 (SELF:FieldSpec:Valtype == 'C' .and. ;

 Instr("99:99", SELF:Fieldspec:Picture)))

DO CASE

/*

//
Uncomment this if you want

// the mouse click to automatically

//
highlight the SLE everytime

// you enter it

CASE oEvent:Message == WM_LBUTTONDOWN

SELF:SetFocus()

SELF:selection

:= selection{0,-1}

SELF:lAllSelected
:= TRUE

RETURN 1L

*/

CASE oEvent:Message == WM_LBUTTONDBLCLK

SELF:SetFocus()

SELF:selection

:= selection{0,-1}

SELF:lAllSelected
:= TRUE

RETURN 1L

CASE oEvent:Message == WM_KEYDOWN

DO CASE

CASE oEvent:wparam == VK_BACK .or. ;

oEvent:wparam == VK_END .or. ;

oEvent:wparam == VK_HOME .or. ;

oEvent:wparam == VK_LEFT .or. ;

oEvent:wparam == VK_RIGHT .or. ;

oEvent:wParam == VK_DELETE

IF SELF:lAllowcutandPaste

IF !(InList(cChar,"X","C","V","Z") .AND.;

lCtrlOn)

SELF:processNum(oEvent)

IF oEvent:wparam == VK_BACK .or.;

oEvent:wParam == VK_DELETE
// movement keys OTHER than

// backspace need TO finish

// processing

RETURN 1L

ENDIF

ENDIF

ELSE

SELF:processNum(oEvent)

IF oEvent:wparam == VK_BACK
.or. ;

oEvent:wParam == VK_DELETE

// movement keys OTHER than

// backspace need TO finish

// processing

RETURN 1L

ENDIF

ENDIF

ENDCASE

CASE oEvent:Message == WM_CHAR

IF SELF:lAllowcutandPaste

IF (InList(oEvent:wparam,3,22,24,26) .and. ;

lCtrlOn) .or. ;

 (InList(cChar,"X","C","V","Z") .AND. lCtrlOn)

// kill the wmchar message for the

// cut/copy/paste messages

 RETURN 1L

ELSE

// Grab the event, the KeyDown and send it

// over to rightSle's KeyDown

SELF:processNum(oEvent)

RETURN 1L

ENDIF

ELSE

// Grab the event, the KeyDown and send it over

// to rightSle's KeyDown

SELF:processNum(oEvent)

RETURN 1L

ENDIF

ENDCASE

OTHERWISE

// we have a character or template, lets check it

DO CASE

CASE oEvent:Message == WM_CHAR

IF SELF:lAllowcutandPaste

IF (InList(oEvent:wparam,3,22,24,26) .and. ;

lCtrlOn) .or. ;

 (InList(cChar,"X","C","V","Z") .AND. lCtrlOn)

 // kill the wmchar message for the

 // cut/copy/paste messages

 RETURN 1L

ENDIF

ENDIF

IF SELF:Selection:Start = 0 .and. ;

 SELF:oEditString <> NULL_OBJECT

 SELF:oEditString:TestFirstChar(CHR(oEvent:wParam))

ENDIF

ENDCASE

END CASE

// Let all the other messages, go back to VO's Sle Wndproc

RETURN SUPER:Dispatch(oEvent)

Duplication of Code

Most programmers are creatures of habit. Cut and paste is quick, and easy. However, making of habit of cut and paste can lead to maintenance problems. Think about this situation. You discover a “bug” in some of your code. Unfortunately, you have cut and pasted this code (3 or 4 lines) into 30 or 40 places across several methods. It is not going to be a fun afternoon finding and correcting each error.

If you find yourself cutting and pasting a lot: Stop. Think about why you are cutting and pasting. The lines that you are cutting and pasting are probably a very good candidate for a new method. That way we do not end up with duplication of code. A side benefit is that the code is easier to read and maintain.

Early Binding

CA-Visual Objects supports “early binding”. Early bound means that the compiler can resolve everything about the instance variable at compile time. Early bound instance variables are generally faster as they do not have to be resolved at runtime. CA-Visual Objects also supports the early binding of methods. Because early bound instance variables and methods are resolved at compile time, the compiler will enforce data-type rules and return values. This will result in fewer runtime errors! To take advantage of early binding, we must declare our methods and instance variables to the compiler. Here is what our SLE class might look like:

CLASS rightSle INHERIT SingleLineEdit

PROTECT oPB

AS OBJECT

PROTECT lTurnNegative

AS LOGIC

PROTECT lAllSelected

AS LOGIC

PROTECT lObeyFocusRuleAlways
AS LOGIC

PROTECT lTurnOffEnter

AS LOGIC

PROTECT lAllowcutandPaste
AS LOGIC

PROTECT cTemplateChar

AS STRING

PROTECT lTruePicture

AS LOGIC
// If TRUE then $ sign overwrite.. use

// available fieldspec length else do not

// overwrite

PROTECT lDoubleAsToday

AS LOGIC
// if a date button is present, put today

// instead of showing the calendar

EXPORT lAlignCalendarLeft
AS LOGIC
// Used to make calendar align either left

// or right on the sle

EXPORT FirstDayoftheWeek
AS DWORD
// for the dataSLE

EXPORT nDirection

AS LONG

// to control the direction of the

// enterkey

EXPORT symMethod

AS SYMBOL
// symbol to hold the calendar /

// calculator method to invoke on a double

// click

EXPORT lSendFromButton AS LOGIC
// is the buttondoubleclick comming from a

// button

#IFDEF _IsVO2

PROTECT wFocusSel
AS WORD

#ENDIF

DECLARE ACCESS zeropad

DECLARE ASSIGN obeyFocus,ProcessEnterKey,DoubleAsToday

DECLARE METHOD processnum, setfield, InvalidAction

DECLARE METHOD ShowCalc, ShowCalendar, processEnter

DECLARE METHOD CalKeyDown,SetOrigin,rslePaste

The Main Init

Being that the goal of all subclasses in “easy” integration with the IDE, the init should always handle the original parameters as passed by the IDE. Once the original parameters are handled, we are given the opportunity to expand the class.

METHOD Init(oOwner, nId, oPoint, oDim, kStyle, lDataAware) CLASS rightSle

LOCAL DIM firstDay[2] AS BYTE

SELF:lAllSelected
 := FALSE

SELF:lAlignCalendarLeft := TRUE

// Default to left align

SELF:lTurnNegative
 := FALSE

// start off with positive numbers

SELF:oPB

 := NULL_OBJECT
// default our pushbutton holder

SELF:nDirection

 := 1

// go to the next field on an enter

// set to 0 to disable enter key

// movements!

GetLocaleInfo(LOCALE_USER_DEFAULT, LOCALE_IFIRSTDAYOFWEEK, @firstDay, 2)

IF firstDay[1] = 48
// Monday 1st Day of Week

SELF:FirstDayoftheWeek
:= 2
// set up Sunday as initial day of the week

ELSEIF firstDay[1] = 54

// Sunday 1st Day of Week

SELF:FirstDayoftheWeek
:= 1
// set up Sunday as initial day of the week

ENDIF

SUPER:Init(oOwner, nID, oPoint, oDim, kStyle, lDataAware)

SELF:wFocusSel := FSEL_HOME

// I want the home position to be the default

// comment this out for VO's default

SELF:symMethod
:= #showCalendar

SELF:lTruePicture
:= TRUE
// If TRUE Num_08_02 $9999.99 would allow

// 12345.67 else $1234.56

SELF:lObeyFocusRuleAlways
:= FALSE

SELF:lTurnOffEnter

:= FALSE
// by default we want to allow the enter

// change this globablly by using

// rightSLE's postinit

SELF:lallowcutandPaste

:= TRUE

// by default allow cut and paste

SELF:lDoubleAsToday

:= FALSE
// keep the old rightSLE default of always

// showing the calendar by default

SELF:lSendFromButton

:= FALSE
// we start off from the SLE, not the

// button

SELF:cTemplateChar := CHR(SetThousandSep()) + "()$ "

SELF:postinit()

RETURN SELF

Postinit

The Postinit is a staple of the CA-Visual Objects GUI classes. It gives the programmer the ability to modify class variables once the class has been instanciated. However this functionality was overlooked with the controls. But, it is very easy to add this functionality. The following will add the ability to process a postinit (without error) in any SingleLineEdit subclass:

METHOD postinit() CLASS SingleLineEdit

RETURN SELF

This simply construct can easily be expanded to include all VO controls by simply following the inheritance tree up and inserting the postinit higher.

Using

The postinit gives you the ability to “globally” change the behavior of your subclass at runtime. For example, by using the postinit, you can let your Users choose the focus change method of their singleLineEdits (left,right,trimmed,all selected, etc). All that is required to implement this is an ini file or registry entry stating what the choice should be. In the postinit method, set the SELF:wFocusSel ivar to the users choice.

Focus Change

Focus change is where all of the “magic” happens. This event is called each time a SLE gains focus. Pay particular attention to detail here. When making changes to a control event, you must always totally handle the event yourself or make sure that the upward flow is maintained. If you looked at the source to focus change from the SDK, you would quickly notice that the developers used a sendmessage to control the focus state (cursor left aligned, right aligned, all text selected, etc). This has the advantage of placing cursor position before anything else happens. But, it also means that a mouse click would place the cursor at the mouse position instead of following the focus change method that was selected via the IDE.

This is where inheritance comes in handy. You first allow the super class to change focus in its own way. But then you use the postmessage function to reposition the cursor the way that you want it positioned. By tweaking the Focus Change method, you can emulate the way that other languages handle keystrokes.

Here is an example of a changed focuschange method:

METHOD FocusChange(oFocusChangeEvent) CLASS rightSLE

LOCAL iPos

AS LONG // modified focuschange from the SDK

LOCAL lIfDefFSEL_TRIMEND
AS LOGIC

LOCAL wFocusSelect

AS WORD

SUPER:FocusChange(oFocusChangeEvent)

#IFDEF FSEL_TRIMEND

 lIfDefFSEL_TRIMEND
:= TRUE

 wFocusSelect

:= FSEL_TRIMEND

#ELSE // wem 06/17/00 for missing property in earlier cavowed.inf

 lIfDefFSEL_TRIMEND
:= FALSE

 wFocusSelect

:= 0

#ENDIF

IF oFocusChangeEvent:GotFocus

IF wFocusSel = FSEL_ALL // wcm 4/10/2001

// we have to reset allselected to true to make sure rightSLE behaves

// properly

SELF:lAllSelected := TRUE

 ENDIF

IF Empty(SELF:value) .or. SELF:lObeyFocusRuleAlways

// wcm 6/6/2001
only

// do this if the

// SLE is empty or

// we are told to

// always obey

// focuschange

 IF wFocusSel == FSEL_HOME

 iPos := 0

 IF oEditString != NULL_OBJECT

 iPos := 1

 IF !oEditString:IsEditPos(iPos)

 iPos := oEditString:NextEditPos(iPos)

 ENDIF

 iPos--

 ENDIF

 PostMessage(SELF:Handle(), EM_SETSEL, DWORD(_CAST, iPos), iPos)

 ELSEIF wFocusSel = FSEL_END

 iPos := oEditString:PrevEditPos(INT(_CAST,SLen(SELF:CurrentText)))

 PostMessage(SELF:Handle(), EM_SETSEL, DWORD(_CAST, iPos), iPos)

 ELSEIF wFocusSel = FSEL_TRIM

 iPos := INT(_CAST,SLen(RTrim(SELF:CurrentText)))

 PostMessage(SELF:Handle(), EM_SETSEL, 0, iPos)

 // wem 06/17/00

 ELSEIF lIfDefFSEL_TRIMEND .AND. wFocusSel = wFocusSelect

 iPos := INT(_CAST,SLen(RTrim(SELF:CurrentText)))

 PostMessage(SELF:Handle(), EM_SETSEL, iPos, iPos)

 ELSEIF wFocusSel = FSEL_ALL

 // Change by SG 26/09/00

 PostMessage(SELF:handle(),EM_SETSEL,0,-1)
 // This selects all the

 // current test

SELF:lAllSelected := TRUE

 ENDIF

ENDIF

ENDIF

RETURN NIL
Speciality Subclasses

With our “container” class optimized, we can now extend it to create specialty subclasses. The main class contains the logic for processing right aligned numbers and calendar controls. The following classes will be mentioned:

· SearchSLE

· File Dialog Class

· DateSLE

· Calculator Class

SearchSLE

The SearchSLE is a subclass of SingleLineEdit that allow you to set up a browser window and pass the fields and dataserver at runtime. Below is the init of SearchSLE.

METHOD Init(oForm,oResID,oPoint,oDim,kStyle,lDataAware) CLASS SearchSLE

SUPER:init(oForm,oResID,oPoint,oDim,kStyle,lDataAware)

SELF:symMethod
:= String2Symbol("sleSearch")

oPoint := SELF:origin

oDim := SELF:size

oPoint:y -= 1

oPoint:x := oPoint:x + oDim:width-28

oDim:width := 30

oDim:height += 1

SELF:oPB := SLEButton{oForm,-1,oPoint,oDim,SELF}

SELF:oPB:hBitmapUp

:= LoadBitmap(_GetInst(),String2Psz("IBM_MAGNIFUP"))

SELF:oPB:hBitmapDown
:= LoadBitmap(_GetInst(),String2Psz("IBM_MAGNIFDN"))

SetWindowPos(SELF:handle(),0L,0,0,SELF:size:width-30,SELF:size:height,SWP_NOMOVE+0x14)

// before we leave, show the push button we created

IF SELF:IsVisible()

SELF:oPB:show()

ENDIF

// if the SLe is disabled in the IDE, we want to disable the button as well

IF SELF:ReadOnly .or. !IsWindowEnabled(SELF:handle())

SELF:disable()

ENDIF

The key to SearchSLE is the following line:

SELF:symMethod
:= String2Symbol("sleSearch")

This sets up an exported variable called symMethod, which is the method to invoke when the pushbutton is clicked. A double-click on the SLE will also invoke the symMethod.

The Dispatch

The trick to sending the SLE to the method is contained in the SearchSLE’s dispatch. It uses the send command to invoke the method (if it exists). Here is the code to invoke the method.

METHOD Dispatch(oEvent) CLASS SearchSLE

DO CASE

CASE SELF:ReadOnly

// we don’t want to search a readonly field

CASE oEvent:Message == WM_LBUTTONDBLCLK

IF IsMethod(SELF:owner,SELF:symMethod)

Send(SELF:owner,SELF:symMethod,SELF,SELF:CurrentText)

ENDIF

RETURN 1L

ENDCASE

RETURN(SUPER:Dispatch(oEvent))
You will notice that the IsMethod function is used to check for the existence of the method before it is called. This is necessary, as the symMethod variable is not known at compile time.

How Do I Use It?

SearchSLE is really quite simple to implement. It is easiest to invoke it during the postinit method of your data window. The following code shows how to hook a searchSLE.

METHOD PostInit(oWindow,iCtlID,oServer,uExtra) CLASS dwTest

//Put your PostInit additions here

self:oDCsleSearchme:symMethod := String2Symbol("mySearch")

RETURN NIL

METHOD mySearch(oSLE,cSLECurrentTextValue) CLASS dwTest

Infobox{self:owner,”Info”,”In a custom search method”}:show()

RETURN NIL

FileSLE

Microsoft provides a set of standard dialogs for doing common tasks. One of those tasks is a standard dialog for selecting a file. By subclassing SingleLineEdit, we can take advantage of the standard File Open dialog and send the results back to our Single Line Edit. The following example shows how we can accomplish this task.

CLASS FileSLE INHERIT rightSLE

PROTECT nDialogType := 1
AS INT

EXPORT xFilter,xFilterDesc AS USUAL

DECLARE METHOD ShowFileDialog

METHOD Dispatch(oEvent) CLASS FileSLE

DO CASE

CASE oEvent:Message == WM_LBUTTONDBLCLK

SELF:showFileDialog()

RETURN 1L

ENDCASE

RETURN(SUPER:Dispatch(oEvent))

METHOD showFileDialog() AS VOID PASCAL CLASS fileSle

LOCAL oFileDLG AS StandardFileDialog

IF nDialogType == 1

// Open File Dialog

oFileDLG := OpenDialog{SELF:owner,SELF:currenttext}

IF SELF:xFilter <> NIL

oFileDLG:SetFilter(SELF:xFilter,SELF:xFilterDesc)

ELSE

oFileDLG:SetFilter("*.*","All FIles")

ENDIF

oFileDLG:show()

IF !Empty(oFileDLG:FileName)

SELF:textvalue := oFileDLG:FileName

ENDIF

SetFocus(SELF:handle())

ELSE

oFileDLG := SaveAsDialog{SELF:owner,SELF:currenttext}

IF SELF:xFilter <> NIL

oFileDLG:SetFilter(SELF:xFilter,SELF:xFilterDesc)

ELSE

oFileDLG:SetFilter("*.*","All FIles")

ENDIF

oFileDLG:show()

IF !Empty(oFileDLG:FileName)

SELF:textvalue := oFileDLG:FileName

ENDIF

SetFocus(SELF:handle())

ENDIF

RETURN

pbFileSLE

In addition to the fileSLE, there is pbfileSLE. This is a pushbutton version of the File Open dialog that inherits from fileSLE. It places a Bitmap Button of a file folder immediately beside the SLE. This give a visual clue as to what input is expected. It also keeps you from having to double-click the SLE to open up the dialog box. However, the pbfileSLE does respond to the double click just as its parent does.

DateSLE

DateSLE is a subclass of PEDateSLE written by Graham McKenie. It adds a Bitmap Button of a calendar immediately to the right of the SLE. It does maintain the right mouse menu of PEDateSLE. The following is the init of dateSLE.

METHOD Init(oOwner, nId, oPoint, oDim, kStyle, lDataAware) CLASS DateSle

LOCAL DIM firstDay[2] AS BYTE

SUPER:Init(oOwner, nID, oPoint, oDim, kStyle, lDataAware)

oPoint
:= SELF:origin

oDim
:= SELF:size

oPoint:y -= 1

oPoint:x := oPoint:x + oDim:width-28

oDim:width := 30

oDim:height += 1

SELF:oPB

:= SLEButton{oOwner,-1,oPoint,oDim,SELF}

SELF:oPB:hBitmapUp
:= LoadBitmap(_GetInst(),String2Psz("IBM_CALUP"))

SELF:oPB:hBitmapDown
:= LoadBitmap(_GetInst(),String2Psz("IBM_CALDN"))

IF SELF:IsVisible()

SELF:oPB:show()

ENDIF

SetWindowPos(SELF:handle(),0L,0,0,SELF:size:width-30,SELF:size:height,SWP_NOMOVE+0x14)

SELF:FieldSpec := DateFS{}

// Add a popup menu to the PEDateSle - two items Today and Calendar

SELF:ContextMenu := PEDateSleContextMenu{ SELF)

// Default to an empty data value,

// if you don't the keydown method will mess up because

// the test of If !
(oControl:Value == NULL_DATE) will fail because

// oControl:Value will be Nil not Null_Date

SELF:Value := Null_Date

SELF:textvalue
:= DToC(NULL_DATE)

GetLocaleInfo(LOCALE_USER_DEFAULT, LOCALE_IFIRSTDAYOFWEEK, @firstDay, 2)

IF firstDay[1] = 48

// Monday 1st Day of Week

SELF:FirstDayoftheWeek := 2
// set up Sunday as initial day of the week

ELSEIF firstDay[1] = 54

// Sunday 1st Day of Week

SELF:FirstDayoftheWeek := 1
// set up Sunday as initial day of the week

ENDIF

IF SELF:ReadOnly .or. !IsWindowEnabled(SELF:handle())

SELF:disable()

ENDIF

The last few lines of the init are probably the most interesting; they set up the first day of the calendar. Not all countries use Sunday as the first day of the week. Asking windows for the first day of the week means that the calendar will perform correctly wherever you install it.

Sending a Date to the Calendar

One handy addition to the calendar class is the ability to pass whatever is in the SLE to the control and set the calendar . The default is to always set the calendar to today(). To accomplish this, the following postinit() was used instead of the original postinit() of dlgPECalendar.

METHOD PostInit(oParent,uExtra) CLASS dlgPECalendar

LOCAL oOrigin

AS Point

LOCAL oSize

AS Dimension

LOCAL lAlignLeft
AS LOGIC

LOCAL oDateSle

AS OBJECT

LOCAL dOldDate

AS DATE

oDateSle := uExtra

// pick up what the user typed into the SLE control

dOldDate := CToD(oDateSle:textvalue)

// Get the stuff about the sle that we need

oOrigin

:= PClone(oDateSle:Origin)

oSize

:= PClone(oDateSle:Size)

lAlignLeft
:= oDateSle:lAlignCalendarLeft

// Origin:x is always the Sle's origin:x unless the alignment is right-

oOrigin:x := iif(! lAlignLeft, oOrigin:x + oSize:Width, oOrigin:x)

// Origin:y has to be fiddled with to make the calendar align just below the Sle.

SELF:Origin := Point{ oOrigin:x, SELF:Owner:Size:Height - SELF:Size:Height - (SELF:Owner:Size:Height - oOrigin:y) }

SELF:oDCCalendar:CurrentDate := iif(dOldDate == NULL_DATE,Today(),dOldDate)

SELF:oDCCalendar:FirstDayoftheWeek
:= oDateSLE:FirstDayoftheWeek

RETURN NIL
Conclusion

This paper has presented several extensions to the default SingleLineEdit. CA-Visual Objects is a very powerful language, and through inheritance, you can make your SingleLineEdits much more user friendly.

Willie Moore is a TIM (Transport Infrastructure Manager) for Bellsouth Telecommunications, Inc located in Birmingham, Alabama. He is also the owner of wmConsulting. He has been programming in CA-Clipper since Summer ’87 and has been producing applications in CA-Visual Objects since release 1.0. He is a Microsoft Certified Systems Engineer and a Microsoft Certified Trainer. Willie can be reached on the Internet at williem@wmConsulting.com .
2 DAV12SN

Single Line Edits (SLEs) to the Max 1

